

Field data collection for remote sensing of winter cover crops and crop residue cover

W. Dean Hively, U.S. Geological Survey

with Alex Soroka¹, Brian Lamb¹, Jyoti Jennewien², Greg McCarty², Feng Gao², Alison Thieme³ in collaboration with Jen Nelson⁴, Jason Keppler⁵

> ¹USGS, ²USDA Agricultural Research Service, ³University of Maryland, ⁴Delaware Association of Conservation Districts, ⁵Maryland Department of Agriculture

•U.S. Department of the Interior •U.S. Geological Survey

Conservation Technology Information Center Conservation Verification Network (CVN) kickoff meeting August 25th, 2021, online

On-farm conservation performance is variable

Green vegetation (cover crops) crop residue (conservation tillage) and bare soil (plow tillage) each reflect light differently

We can measure and map these practices using satellite imagery

Chesapeake Bay region Focus on Maryland, Delaware Delmarva Peninsula

ALL ADALL ADATE

Cover crop enrollment data Field boundary polygons

Jan 6th, 2011 SPOT4 satellite imagery MD Chops Jan6th2011 1101061606141J05625272_1GST_sh_toa_tif.tif

Digitized at county conservation districts as part of MDA cost-share enrollment ~ 25,000 fields per year

CC_Field Sampling Locations

Long-term collaboration with Maryland Department of Agriculture supports access to farm cost-share enrollment data

This normally private information was released to the public by the collaborating farmer

04 08

Cover crop enrollment data – points and centroids

Centroids for fields are useful, but not as useful as boundary polygons

Sometimes issues with points falling on in-fields irregular features, grassed waterways, etc...

Calculate NDVI time series for each field

- Harmonized Landsat and Sentinel (HLS) satellite imagery
- Up to 4-day repeat frequency depending on clouds

Average NDVI per field, per image date Normalized difference vegetation index

Curve fitting approach to phenology identifies:

- Green-up date
- Green-up momentum
- Maximum wintertime and springtime NDVI and associated performance
- Termination date

Cover crop phenology from HLS imagery

- Greenup and termination dates identified by vegetation index inflection points using Harmonized Landsat Sentinel (HLS) satellite imagery
- Maximum performance in wintertime and springtime derived from index correlation with field sampling data (aboveground biomass, fractional green vegetative cover)

Cover crop phenology analysis

- Farmer-reported planting date, species, planting method, seeding rate, previous crop allows evaluation of green-up and establishment
- Farmer-reported termination date and termination method (herbicide, plow, green chop) allows evaluation of end of season dynamics

June 22nd roadside survey to confirm identity of grain crops grown for harvest

≫USGS

Spring termination analysis

Measuring cover crops in the field

Physical sampling of plants

- Biomass (weight per 0.5 m² quadrat)
- Ground cover (by photo analysis)
- Plant nitrogen content, C:N ratio
- Plant growth stage, height, tillering, etc...

- 3 quadrats per field, > 10 photos
- 60 m apart to fall in different pixels
- Avoiding edges and irregular areas
- > 2000 on-farm samples over 10 yr

Cover crop performance

Seasonal maxNDVI translated to performance using field calibration dataset

Percent green ground cover

Aboveground biomass

Various indices available

Accurate below NDVI = 0.8 (~80% cover)

	r^2
NDVI	0.970
GNDVI	0.960
SR	0.880
SAVI (L=1)	0.970
G-R	0.900
EVI	0.960
TVI	0.950
NGRD	0.920
VARI	0.920
NDREI	0.940

Saturates above NDVI = 0.8 (~1000 to 1500 kg/ha)

Prabhakara et al., 2015.

Calibration: Biomass ~ NDVI

Mismatch between sampling date and imagery date causes error

Calibration: Biomass ~ NDVI

Species relationship with NDVI can vary due to leaf angle distribution

≈USGS

Climate data are also important GDD 4°C base temperature Frost GDD to measure onset of dormancy and chlorosis

- Increased cover crop associated with increased winter ground cover
- Long-term time series was needed to account for effect of wintertime climate variation

USGS *Hively et al., 2020. doi:10.2489/jswc.75.3.362*

Summary – cover crop field data

- In-field nadir photos from camera at 4m height is our best tool for green vegetative ground cover calibration data
 - > 10 photos per field, several per satellite pixel
 - In-field spatial variability is significant
 - Avoid field edge areas walk a long distance in each field
- Photos processed using "Green Fraction" code in python, makes batch processing easy
 - Will publish method and code in 2021
- Biomass Nitrogen, Carbon content of samples also used to calibrate satellite analyses
- Field boundaries and agronomic management data from Maryland cost-share program are extremely useful for calibration and for determining cover crop outcomes
- Farmers have been very supportive in allowing access to fields
- I would also like to have information about yield goals and actual yields, to evaluate residual soil N there are a lot of N limited cover crops, and it affects performance currently those data are not available

Remote sensing of crop residue / tillage intensity

- Best achieved by measuring cellulose / lignin absorption feature near 2100 nm
 - Requires spectral resolution near 2100 nm (WorldView3, ASTER, PRISMA)
- Also achievable from Landsat and Sentinel using the Normalized Difference Tillage Index (1600 nm - 2100 nm) / (1600 nm + 2100 nm) and/or machine learning
- Interference from green vegetation and background soil moisture

Mapping conservation performance

Plow tillage 0-30% cover

High residue

60-100% cover

Percent Resiude

Hively et al., 2018. https://doi.org/10.3390/rs10101657

Mapping crop residue using Worldview 3 SWIR imagery

Achieved high accuracy (R² = 0.94) in mapping crop residue on fields with minimal vegetation (NDVI <0.3)

Hively et al., 2018. https://doi.org/10.3390/rs10101657

Crop residue field data collection

- Line-point transect method is time consuming, though reliable
- In-field nadir photos analyzed in Sample Point give similar results, faster, >10 per field
- 5 years of sampling data along with WorldView3 SWIR imagery (MD) (>1000 photos)

≈USGS

Hively et al., 2018 https://doi.org/10.3390/rs10101657

Crop residue field data collection

- Survey data have been problematic, apparently is difficult to separate 30-60% cover from 60-100% cover from edge of field due to view angle and influence of headlands
 - Delaware drives an annual roadside survey of > 500 fields with a follow-up team collecting line-point transect data from a subset of field for QAQC
 - Survey works best under moist conditions that promote visible contrast between soil and residue, when very dry they have to stop

	Landsat 8	, 22 May	
	Overall		Survey
Residue Class	Ha	%	%
0–30	72,584	30.9	31.4
30–60	37,157	15.8	8.1
60–100	124,884	53.2	60.5
>30	162,041	69.1	68.6
Total	234,625	100.0	100

Hively et al., 2019 https://doi.org/10.3390/rs11161857

Satellite and survey results match for 0-30 and for 30-100 groupings, but survey is shifted from 30-60 toward 60-100 relative to satellite

Effects of surface moisture on residue mapping

- Observed 8 fields in mid-irrigation at time of satellite overpass (May 15, 2015)
- Adjusted SWIR residue indices based on satellite water index (1660nm / 2165nm)
- Greatly improved accuracy in wet areas

Quemada et al., 2018

Summary – crop residue cover

- In-field nadir photos from camera at 4m height is our best tool for calibration data
 - > 10 photos per field, several per satellite pixel
 - In-field spatial variability is significant
 - Avoid field edge areas walk a long distance in each field
- Photos processed in SamplePoint, 200 points per photo = time consuming
 - Working on AI machine learning applications for photo classification
- Survey data had difficulty distinguishing 30-60% cover from 60-100% cover
 - Over-estimated >60% class, underestimated 30-60% class

References

- Gao, F., M. Anderson, and W. Dean Hively. Detecting cover crop end-of-season using VENuS and Sentinel-2 satellite imagery. Remote Sensing 2020, 12, 3524; https://doi.org/10.3390/rs12213524
- Gao, F., M. Anderson, C. Daughtry, A. Karnieli, W.D. Hively, and W. Kustas. 2020. A near-real-time approach for detecting early crop stage of corn and soybean using high temporal and spatial resolution imagery. Remote Sensing of Environment 242(1), 111752; https://doi.org/10.1016/j.rse.2020.111752
- Hively, W.D., S. Lee, A. Sadeghi, G.W. McCarty, A. Soroka, J. Keppler, I-Y. Yeo and G. Moglen. 2020. Estimating the effect of winter cover crops on nitrogen leaching using cost-share enrollment data, satellite remote sensing, and Soil and Water Assessment Tool (SWAT) modeling. Journal of Soil and Water Conservation 75 (3) 362-375. https://doi.org/10.2489/jswc.75.3.362
- Hively, W.D., J. Shermeyer, B.T. Lamb, C.S. Daughtry, and M. Quemada. 2019. Mapping crop residue by combining Landsat and Worldview 3 satellite imagery. Remote Sensing 11(16), 1857; https://doi.org/10.3390/rs11161857
- Hively, W.D., B. Lamb, C.S. Daughtry, G.W. McCarty, and M. Quemada. 2018. Mapping Crop Residue and Tillage Intensity Using WorldView-3 Satellite Shortwave Infrared Residue Indices. Remote Sensing. 2018, 10(10), 1657; https://doi.org/10.3390/rs10101657
- Hively, W.D.; Lamb, B.T.; Daughtry, C.S.T.; Serbin, G.; Dennison, P.; Kokaly, R.F.; Wu, Z.; Masek, J. 2021. Evaluation of SWIR Crop Residue Bands for the Landsat Next Mission . Remote Sens. 2021, 13, x. https://doi.org/10.3390/xxxxx
- Prabhakara, K., W.D. Hively, and G.W. McCarty. 2015. Evaluating the relationship between biomass, percent groundcover and remote sensing indices across six winter cover crop fields in Maryland, United States. International Journal of Applied Earth Observation and Geoinformation 39:88-102; https://doi.org/10.1016/j.jag.2015.03.002
- Quemada, M., W.D. Hively, C.S. Daughtry, B.T. Lamb, and J. Shermeyer. 2018. Improved crop residue cover estimates obtained by coupling spectral indices for residue and water. Remote Sensing of Environment 206 (2018) 33-34; https://doi.org/10.1016/j.rse.2017.12.012
 Remote Sensing special issue publications on crop residue and nonphotosynthetic vegetation :

 <u>https://www.mdpi.com/journal/remotesensing/special_issues/Crop_Residue_Non-Photosynthetic_Vegetation#published</u>

Green = *cover crop publications* ; *orange* = *crop residue publications*

Thank you!

W. Dean Hively, Research Physical Scientist
Lower Mississippi-Gulf Water Science Center
phone: 301-504-9031 email: whively@usgs.gov
posted to USDA-ARS Hydrology and Remote Sensing Laboratory
Bldg 007 BARC-W, 10300 Baltimore Ave, Beltsville, MD 20705

Funded by the USGS Land Change Science and Priority Ecosystems programs, the USDA Conservation Effects Assessment Project (CEAP), the Maryland Department of Agriculture, and the Delaware DNREC